Applying Simheuristics to Minimize Overall Costs of an MRP Planned Production System

Author:

Seiringer WolfgangORCID,Castaneda JulianaORCID,Altendorfer KlausORCID,Panadero JavierORCID,Juan Angel A.ORCID

Abstract

Looking at current enterprise resource planning systems shows that material requirements planning (MRP) is one of the main production planning approaches implemented there. The MRP planning parameters lot size, safety stock, and planned lead time, have to be identified for each MRP planned material. With increasing production system complexity, more planning parameters have to be defined. Simulation-based optimization is known as a valuable tool for optimizing these MRP planning parameters for the underlying production system. In this article, a fast and easy-to-apply simheuristic was developed with the objective to minimize overall costs. The simheuristic sets the planning parameters lot size, safety stock, and planned lead time for the simulated stochastic production systems. The developed simheuristic applies aspects of simulation annealing (SA) for an efficient metaheuristic-based solution parameter sampling. Additionally, an intelligent simulation budget management (SBM) concept is introduced, which skips replications of not promising iterations. A comprehensive simulation study for a multi-item and multi-staged production system structure is conducted to evaluate its performance. Different simheuristic combinations and parameters are tested, with the result that the combination of SA and SBM led to the lowest overall costs. The contributions of this article are an easy implementable simheuristic for MRP parameter optimization and a promising concept to intelligently manage simulation budget.

Funder

FWF Austrian Science Fund

Spanish Ministry of Science

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3