Using Explainable Machine Learning to Explore the Impact of Synoptic Reporting on Prostate Cancer

Author:

Janssen Femke M.ORCID,Aben Katja K. H.ORCID,Heesterman Berdine L.ORCID,Voorham Quirinus J. M.,Seegers Paul A.,Moncada-Torres ArturoORCID

Abstract

Machine learning (ML) models have proven to be an attractive alternative to traditional statistical methods in oncology. However, they are often regarded as black boxes, hindering their adoption for answering real-life clinical questions. In this paper, we show a practical application of explainable machine learning (XML). Specifically, we explored the effect that synoptic reporting (SR; i.e., reports where data elements are presented as discrete data items) in Pathology has on the survival of a population of 14,878 Dutch prostate cancer patients. We compared the performance of a Cox Proportional Hazards model (CPH) against that of an eXtreme Gradient Boosting model (XGB) in predicting patient ranked survival. We found that the XGB model (c-index = 0.67) performed significantly better than the CPH (c-index = 0.58). Moreover, we used Shapley Additive Explanations (SHAP) values to generate a quantitative mathematical representation of how features—including usage of SR—contributed to the models’ output. The XGB model in combination with SHAP visualizations revealed interesting interaction effects between SR and the rest of the most important features. These results hint that SR has a moderate positive impact on predicted patient survival. Moreover, adding an explainability layer to predictive ML models can open their black box, making them more accessible and easier to understand by the user. This can make XML-based techniques appealing alternatives to the classical methods used in oncological research and in health care in general.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Reference71 articles.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Explaining evolutionary feature selection via local optima networks;Proceedings of the Genetic and Evolutionary Computation Conference Companion;2024-07-14

2. A Comparative Study and Systematic Analysis of XAI Models and their Applications in Healthcare;Archives of Computational Methods in Engineering;2024-04-16

3. Texture Feature Analysis for Classification of Early-Stage Prostate Cancer in MpMRI;Lecture Notes in Computer Science;2024

4. CoxNAM: An interpretable deep survival analysis model;Expert Systems with Applications;2023-10

5. Combined analysis of satellite and ground data for winter wheat yield forecasting;Smart Agricultural Technology;2023-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3