Abstract
In the context of the energy transition, sound decision making regarding the development of renewable energy systems faces various technical and societal challenges. In addition to climate-related uncertainties affecting technical issues of reliable grid planning, there are also subtle aspects and uncertainties related to the integration of energy technologies into built environments. Citizens’ opinions on grid development may be ambiguous or divergent in terms of broad acceptance of the energy transition in general, and they may have negative attitudes towards concrete planning in their local environment. First, this article identifies the issue of discrepancies between preferences of a fixed stakeholder group with respect to the question of the integration of renewable energy technology, posed from different perspectives and at different points in time, and considers it as a fundamental problem in the context of robust decision making in sustainable energy system planning. Second, for dealing with that issue, a novel dynamic decision support methodology is presented that includes multiple surveys, statistical analysis of the discrepancies that may arise, and multicriteria decision analysis that specifically incorporates the opinions of citizens. Citizens are considered as stakeholders and participants in smart decision-making processes. A case study applying agent-based simulations underlines the relevance of the methodology proposed for decision making in the context of renewable energies.
Subject
Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献