A Novel MCDA-Based Methodology Dealing with Dynamics and Ambiguities Resulting from Citizen Participation in the Context of the Energy Transition

Author:

Ottenburger Sadeeb SimonORCID,Möhrle StellaORCID,Müller Tim OliverORCID,Raskob WolfgangORCID

Abstract

In the context of the energy transition, sound decision making regarding the development of renewable energy systems faces various technical and societal challenges. In addition to climate-related uncertainties affecting technical issues of reliable grid planning, there are also subtle aspects and uncertainties related to the integration of energy technologies into built environments. Citizens’ opinions on grid development may be ambiguous or divergent in terms of broad acceptance of the energy transition in general, and they may have negative attitudes towards concrete planning in their local environment. First, this article identifies the issue of discrepancies between preferences of a fixed stakeholder group with respect to the question of the integration of renewable energy technology, posed from different perspectives and at different points in time, and considers it as a fundamental problem in the context of robust decision making in sustainable energy system planning. Second, for dealing with that issue, a novel dynamic decision support methodology is presented that includes multiple surveys, statistical analysis of the discrepancies that may arise, and multicriteria decision analysis that specifically incorporates the opinions of citizens. Citizens are considered as stakeholders and participants in smart decision-making processes. A case study applying agent-based simulations underlines the relevance of the methodology proposed for decision making in the context of renewable energies.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3