ECG-Free Heartbeat Detection in Seismocardiography Signals via Template Matching

Author:

Centracchio Jessica1ORCID,Parlato Salvatore1,Esposito Daniele1ORCID,Bifulco Paolo1ORCID,Andreozzi Emilio1ORCID

Affiliation:

1. Department of Electrical Engineering and Information Technologies, University of Naples Federico II, Via Claudio 21, 80125 Naples, Italy

Abstract

Cardiac monitoring can be performed by means of an accelerometer attached to a subject’s chest, which produces the Seismocardiography (SCG) signal. Detection of SCG heartbeats is commonly carried out by taking advantage of a simultaneous electrocardiogram (ECG). SCG-based long-term monitoring would certainly be less obtrusive and easier to implement without an ECG. Few studies have addressed this issue using a variety of complex approaches. This study proposes a novel approach to ECG-free heartbeat detection in SCG signals via template matching, based on normalized cross-correlation as heartbeats similarity measure. The algorithm was tested on the SCG signals acquired from 77 patients with valvular heart diseases, available from a public database. The performance of the proposed approach was assessed in terms of sensitivity and positive predictive value (PPV) of the heartbeat detection and accuracy of inter-beat intervals measurement. Sensitivity and PPV of 96% and 97%, respectively, were obtained by considering templates that included both systolic and diastolic complexes. Regression, correlation, and Bland–Altman analyses carried out on inter-beat intervals reported slope and intercept of 0.997 and 2.8 ms (R2 > 0.999), as well as non-significant bias and limits of agreement of ±7.8 ms. The results are comparable or superior to those achieved by far more complex algorithms, also based on artificial intelligence. The low computational burden of the proposed approach makes it suitable for direct implementation in wearable devices.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3