Mesoporous Nano-Sized BiFeVOx.y Phases for Removal of Organic Dyes from Wastewaters by Visible Light Photocatalytic Degradation

Author:

Al-Areqi NiyaziORCID,Umair Muhamad,Senan AhmedORCID,Al-Alas Ahlam,Alfaatesh Afraah,Beg Saba,Khan Kashif-ur-Rehman,Korma SamehORCID,El-Saadony MohamedORCID,Alshehri Mohammed,Ahmed Ahmed,Abbas Ahmed,Alokab Riyad,Cacciotti IlariaORCID

Abstract

With an increasing demand for industrial dyes in our daily lives, water conditions have become worse. Recently, the removal of such environmentally hazardous pollutants from wastewaters through photocatalytic degradation has been drawing increased attention. Three mesoporous nanophases of BiFeVOx.y as (Bi2FeIIIV1−yO5.5−y) visible light photocatalysts were synthesized in this study using ethylene glycol-citrate sol-gel synthesis combined with microwave- assisted calcination. X-ray diffraction (XRD), differential thermal analysis (DTA), FTIR spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy coupled with energy dispersive X-ray spectrometry (SEM-EDS), nitrogen adsorption-desorption isotherms, and UV-Vis diffuse reflectance spectrophotometry (UV-Vis/DRS) were used to characterize the BiFeVOx.y photocatalysts. The visible light-induced photocatalytic activities of the BiFeVOx.y phases were evaluated by the degradation of methylene blue (MB) dye in aqueous solution at pH ~10.0. The results of this study show that the combination of doping strategy with the utilization of advanced synthesis methods plays an important role in improving the structure and surface properties of BiFeVOx.y phases, and thereby enhancing their adsorption and photocatalytic efficiencies. The synthesized mesoporous tetragonal γ-BiFeVOx.y nanophase has been proven to be a potential visible-light photocatalyst for the degradation of organic dyes.

Funder

Special Fund for Development of Strategic Emerging Industries in Shenzhen

National Key R&D Program of China

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3