Scalable Preparation and Improved Discharge Properties of FeS2@CoS2 Cathode Materials for High-Temperature Thermal Battery

Author:

Tian Qianqiu,Hu Jing,Zhang Shiyu,Han XiaopengORCID,Guo HaoORCID,Tang Licheng,Wang Jiajun,Hu Wenbin

Abstract

Long-time thermal batteries with high specific energy are crucial for improving the fast response ability of long-range weapons. Due to its high capacity, safety, and stability, the new sulfide cathode has attracted extensive attention. In this study, an FeS2@CoS2 composite cathode with a core–shell structure was prepared via a combination of hydrothermal and high-temperature vulcanization processes. The novel FeS2@CoS2 cathode not only delivers a high discharge voltage and output capacity, but also has high thermal stability and excellent conductivity. Benefiting from the synergistic effect of FeS2 and CoS2, the as-synthesized cathode yields a high specific capacity. At a large current density of 1 A/cm2, the utilization rate of FeS2@CoS2 cathode material can reach 72.33%, which is 8.23% higher than that of FeS2. Moreover, the maximum output capacity is up to 902 As/g, with a utilization rate of 79.02% at 500 mA/cm2. This novel design strategy holds great promise for the development and application of high-performance thermal batteries in the future.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3