Study of Optical Information Recording Mechanism Based on Localized Surface Plasmon Resonance with Au Nanoparticles Array Deposited Media and Ridge-Type Nanoaperture

Author:

Kang Sung-Mook

Abstract

To verify the possibility of multiple localized surface plasmon resonance based optical recording mechanism, the present study has demonstrated that an Au nanoparticles array deposited with media combined with a ridge-type nanoaperture can amplify the |E|2 intensity of the incident optical light transmitted into the media under specific conditions. Using a numerical Finite-Difference Time-Domain method, we found that the optical intensity amplification first occurred in the near-field region while penetrating the ridge-type nanoaperture, then the second optical amplification phenomenon was induced between the metal nanoparticles, and eventually, the excitation effect was transferred to the inside of the media. In a system consisting of a Gold (Au) NPs deposited media and nanoaperture, various parameters to increase the |E|2 intensity in the near-field region were studied. For an Au nanoparticle size (Cube) = 5 nm × 5 nm × 5 nm, an inter-particle space = 10 nm, and a gap (between nanoaperture and media) = 5 nm, the |E|2 intensity of a ridge-type nanoaperture with an Au nanoparticles array was found to be ~47% higher than the |E|2 intensity of a ridge-type nanoaperture without an Au nanoparticles array.

Funder

National Research Foundation of Korea(NRF) grant funded by the Korea government

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Reference46 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3