Creation and Magnetic Study of Ferrites with Magnetoplumbite Structure Multisubstituted by Al3+, Cr3+, Ga3+, and In3+ Cations

Author:

Zhivulin Vladimir E.,Sherstyuk Daria P.,Zaitseva Olga V.,Cherkasova Natalia A.,Vinnik Denis A.,Taskaev Sergey V.,Trofimov Evgeny A.,Trukhanov Sergei V.ORCID,Latushka Siarhei I.,Tishkevich Daria I.,Zubar Tatiana I.,Trukhanov Alex V.ORCID

Abstract

Multisubstituted barium ferrites with a magnetoplumbite structure were obtained by the method of solid-phase reactions with ferritization and pre-firing. Three-charged, mainly diamagnetic cations Al3+, Cr3+, Ga3+, and In3+ were chosen as substituents for the Fe3+ iron cations, the proportion of which in solid solutions did not exceed 50%. The values of the configurational mixing entropy were calculated for all the compositions. A slight deviation of the chemical composition of the obtained solid solutions from the nominal value was established by the energy-dispersive X-ray spectroscopy method. The phase purity and values of the unit cell parameters were refined from X-ray scattering data using full-profile analysis in the Rietveld method. A non-monotonic behavior of the unit cell parameters as a function of the B-sub-lattice average ionic radius of the magnetoplumbite structure was found. A minimum unit cell volume of ~667.15 Å3 was found for the composition BaFe6.11Al1.56Cr2.17Ga2.16O19 with a B-sub-lattice average ionic radius of ~7.449 Å. The average crystallite size varied within 5.5–6.5 μm. The temperature and field dependencies of the magnetization have been measured. The values of the saturation magnetization, residual magnetization, hysteresis loop squareness, and coercivity at 50 K and 300 K were extracted from the experimental data. Using the Law of Approach to Saturation, the magnetic crystallographic anisotropy coefficient and anisotropy field were calculated. Multisubstitution leads to a significant decrease in such magnetic parameters as the magnetic ordering temperature and spontaneous magnetization at both temperatures. The maximum magnetic ordering temperature of ~297.7 K was found for the composition BaFe5.84Ga6.19O19 with a B-sub-lattice average ionic radius of ~7.586 Å in a field of 500 Oe. A maximum saturation magnetization of ~24.7 emu/g was found for the composition BaFe5.84Ga6.19O19 with a B-sub-lattice average ionic radius of ~7.586 Å at 50 K. A maximum hysteresis loop squareness of ~0.72 was found for the composition BaFe6.11Al1.56Cr2.17Ga2.16O19 with an average ionic radius of ~7.449 Å at 50 K. A maximum magnetic crystallographic anisotropy coefficient of ~2.09 × 105 Erg/g was found for the composition BaFe6.19Al1.25Cr1.57Ga1.74In1.26O19 with a B-sub-lattice average ionic radius of ~7.706 Å at 50 K. The frustrated magnetic state including the nano-sized clusters with an average diameter in the range of 50–200 nm was established from the results of measuring the ZFC and FC temperature magnetizations. The interpretation of the obtained experimental data is carried out taking into account the increased stability of high-entropy phases and regular changes in the intensity of the Fe3+(Al3+, Cr3+, Ga3+, In3+)–O2−–Fe3+(Al3+, Cr3+, Ga3+, In3+) indirect superexchange interactions as a result of magnetic dilution of the iron sub-lattice in the magnetoplumbite structure.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3