Natural Convection Water/Glycerin–CNT Fractionalized Nanofluid Flow in a Channel with Isothermal and Ramped Conditions

Author:

Sadiq Kashif,Siddique ImranORCID,Awrejcewicz JanORCID,Bednarek MaksymilianORCID

Abstract

This article investigates heat and mass transport enrichment in natural convection fractionalized nanofluid flow inside a channel with isothermal and ramped wall conditions under the effects of chemical reactions, radiation, heat absorption, and the Soret effect. To obtain the fractional model, the Caputo time-fractional derivative definition is used, and analytical results are obtained by the Laplace transform. In two base fluids, water and glycerin, the impacts of two nanoparticles, single-wall carbon nanotubes (SWCNTs) and multiple-wall carbon nanotubes (MWCNTs), are investigated. The comparison of six distinct fluids, including water, water–SWCNT, water–MWCNT, glycerin, glycerin–SWCNT and glycerin–WMCNT, is explored graphically. Physical parameters’ effects on isothermal and ramped conditions are graphically depicted and explained in depth. For isothermal wall conditions, the variation in concentration, temperature and velocity is exponential, while for ramped wall conditions, the variation is steady. Finally, the results of skin frictions, Nusselt numbers and Sherwood numbers and for both ramped wall and isothermal wall conditions are evaluated in tabular form for various values of volume fraction. Moreover, it is observed that the temperature, velocity, Nusselt numbers and skin frictions increase by increasing the volume fraction of CNTs.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3