SAR Image Quality Assessment: From Sample-Wise to Class-Wise

Author:

Yu Ziyi1,Dong Ganggang1ORCID,Liu Hongwei1

Affiliation:

1. National Key Laboratory of Radar Signal Processing, Xidian University, Xi’an 710071, China

Abstract

Target recognition is the core application of radar image interpretation. In recent years, deep learning has become the mainstream solution. However, this family of methods is highly dependent on a great deal of training samples. Limited samples may lead to problems such as underfitting and poor robustness. To solve the problem, numerous generative models have been presented. The generated samples played an important role in target recognition. It is therefore needed to assess the quality of simulated images. However, few studies were performed in the preceding works. To fill the gap, a new evaluation strategy is proposed in this paper. The proposed method is composed of two schemes: the sample-wise assessment and the class-wise one. The simulated images can then be evaluated from two different perspectives. The sample-wise assessment combines the Fisher separability criterion, fuzzy comprehensive evaluation, analytic hierarchy process, and image feature extraction into a unified framework. It is used to evaluate whether the relative intensity of the speckle noise of the SAR image and the target backscattering coefficients are well simulated. Contrarily, the class-wise assessment is designed to compare the application capability of the simulated images holistically. Multiple comparative experiments are performed to verify the proposed method.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3