Effective Video Scene Analysis for a Nanosatellite Based on an Onboard Deep Learning Method

Author:

Tamire Natnael Alemayehu1,Kim Hae-Dong2

Affiliation:

1. Aerospace System Engineering, University of Science and Technology (UST), Daejeon 34113, Republic of Korea

2. Department of Aerospace and Software Engineering, Gyeongsang National University, Jinju 52828, Republic of Korea

Abstract

The latest advancements in satellite technology have allowed us to obtain video imagery from satellites. Nanosatellites are becoming widely used for earth-observing missions as they require a low budget and short development time. Thus, there is a real interest in using nanosatellites with a video payload camera, especially for disaster monitoring and fleet tracking. However, as video data requires much storage and high communication costs, it is challenging to use nanosatellites for such missions. This paper proposes an effective onboard deep-learning-based video scene analysis method to reduce the high communication cost. The proposed method will train a CNN+LSTM-based model to identify mission-related sceneries such as flood-disaster-related scenery from satellite videos on the ground and then load the model onboard the nanosatellite to perform the scene analysis before sending the video data to the ground. We experimented with the proposed method using Nvidia Jetson TX2 as OBC and achieved an 89% test accuracy. Additionally, by implementing our approach, we can minimize the nanosatellite video data download cost by 30% which allows us to send the important mission video payload data to the ground using S-band communication. Therefore, we believe that our new approach can be effectively applied to obtain large video data from a nanosatellite.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3