Soil Organic Carbon Prediction Using Sentinel-2 Data and Environmental Variables in a Karst Trough Valley Area of Southwest China

Author:

Wang Ting12,Zhou Wei123ORCID,Xiao Jieyun12ORCID,Li Haoran12,Yao Li12,Xie Lijuan4,Wang Keming5

Affiliation:

1. Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, School of Geographical Sciences, Southwest University, Chongqing 400715, China

2. Chongqing Engineering Research Center for Remote Sensing Big Data Application, School of Geographical Sciences, Southwest University, Chongqing 400715, China

3. State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China

4. Beijing Piesat Information Technology Co., Beijing 100195, China

5. Chongqing Municipal Public Security Bureau Special Weapon and Tactics Police Aviation Management Office, Chongqing 401147, China

Abstract

Climate change is closely linked to changes in soil organic carbon (SOC) content, which affects the terrestrial carbon cycle. Consequently, it is essential for carbon accounting and sustainable soil management to predict SOC content accurately. Although there has been an extensive utilization of optical remote sensing data and environmental factors to predict SOC content, few studies have explored their applicability in karst areas. Therefore, it remains unclear how SOC content can be accurately simulated in these areas. In this study, 160 soil samples, 8 environmental covariates and 14 optical remote sensing variables were used to build SOC content prediction models. Three machine learning models, i.e., support vector machine (SVM), random forest (RF) and extreme gradient boosting (XGBoost), were applied for each of three land use classes, including the entire study area, as well as farmland and forest areas. The variables with the greatest influence were the optical remote sensing bands, derived indices, as well as precipitation and temperature for forest areas, and optical remote sensing band11 and Pop-density for farmland. The results from this study suggest that RF and XGBoost are superior to SVM in prediction accuracy. Additionally, the simulation accuracy of the RF model for the forest areas (R2 = 0.32, RMSE = 6.81, MAE = 5.63) and of the XGBoost model for farmland areas (R2 = 0.28, RMSE = 4.03, MAE = 3.27) was the greatest. The prediction model based on different land use types could obtain a higher simulation accuracy than that based on the whole study area. These findings provide new insights for the estimation of SOC content with high precision in karst areas.

Funder

Project of Chongqing Science and Technology Bureau

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Strategic Priority Research Program (A) of the Chinese Academy of Sciences

Innovation Project of LREIS

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3