Lagged Linkage between the Kara–Barents Sea Ice and Early Summer Rainfall in Eastern China in Chinese CMIP6 Models

Author:

Yang Huidi1,Rao Jian1,Chen Haohan1,Lu Qian1ORCID,Luo Jingjia1

Affiliation:

1. Key Laboratory of Meteorological Disaster of Ministry of Education, ILCEC, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing 210044, China

Abstract

The lagged relationship between Kara–Barents sea ice and summer precipitation in eastern China is evaluated for Chinese models participating in phase 6 of the Coupled Model Intercomparison Project (CMIP6). A previous study revealed a dipole rainfall structure in eastern China related to winter Arctic sea ice variability. Almost all Chinese CMIP6 models reproduce the variability and climatology of the sea ice in most of the Arctic well except the transition regions with evident biases. Further, all Chinese CMIP6 models successfully simulate the decreasing trend for the Kara–Barents sea ice. The dipole centers located in the Yangtze–Huai River Valley (YHRV) and South China (SC) related to Kara–Barents sea ice variability are simulated with different degrees of success. The anomalous dipole rainfall structure related to the winter Kara–Barents sea ice variability can roughly be reproduced by two models, while other models reproduce a shifted rainfall anomaly pattern or with the sign reversed. The possible delayed influence of sea ice forcing on early summer precipitation in China is established via three possible processes: the long memory of ice, the long-lasting stratospheric anomalies triggered by winter sea ice forcing, and the downward impact of the stratosphere as the mediator. Most Chinese models can simulate the negative Northern Hemisphere Annular Mode (NAM) phase in early winter but fail to reproduce the reversal of the stratospheric anomalies to a positive NAM pattern in spring and early summer. Most models underestimate the downward impact from the stratosphere to the troposphere. This implies that the stratospheric pathway is essential to mediate the winter sea ice forcing and rainfall in early summer over China for CMIP6 models.

Funder

National Natural Science Foundation of China

College Students’ Practice Innovation Training Program of Jiangsu Province, NUIST Students’ Platform for Innovation and Entrepreneurship Training Program

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3