Evaluation of Absolute Measurements and Normalized Indices of Proximal Optical Sensors as Estimators of Yield in Muskmelon and Sweet Pepper

Author:

Karaca Cihan12ORCID,Thompson Rodney B.23ORCID,Peña-Fleitas M. Teresa23,Gallardo Marisa23,Padilla Francisco M.23ORCID

Affiliation:

1. Department of Greenhouse Production, Kumluca Vocational School, Akdeniz University, Antalya 07059, Türkiye

2. Department of Agronomy, University of Almeria, 04120 Almeria, Spain

3. CIAIMBITAL Research Centre for Mediterranean Intensive Agrosystems and Agrifood Biotechnology, University of Almeria, 04120 Almeria, Spain

Abstract

The generally established protocol for leaf measurement with proximal optical sensors is to use the most recently fully expanded leaf. However, differences in the nitrogen (N) status of lower and upper leaves could possibly be used to enhance optical sensor measurement. Normalized indices that consider both upper and lower leaves have been proposed to improve the assessment of crop N status and yield estimation. This study evaluated whether normalized indices improved the estimation of crop yield from measurements with three different proximal optical sensors: (i) SPAD-502 leaf chlorophyll meter, (ii) Crop Circle ACS 470 canopy reflectance sensor, and (iii) Multiplex fluorescence meter. The study was conducted with sweet pepper (Capsicum annuum L.) and muskmelon (Cucumis melo L.) in plastic greenhouses in Almeria, Spain. Measurements were made on the latest (most recent) leaf (L1), and the second (L2), third (L3) and fourth (L4) fully expanded leaves. Yield estimation models, using linear regression analysis, were developed and validated from the absolute and normalized measurements of the three optical sensors. Overall, the calibration and validation results indicated that the absolute measurements generally had better yield estimation performance than the normalized indices for all the leaves and different leaf profiles. In both species, there was a better performance at the early phenological stages, such as the vegetative and flowering stages, for the absolute and normalized indices for the three optical sensors. Absolute proximal optical sensor measurements on the lower leaves (L2, L3 and L4) slightly improved yield estimation compared to the L1 leaf. Normalized indices that included the L4 leaf (L1–L4) had better yield estimation compared to those using L2 and L3 (e.g., L1–L2 and L1–L3). Of the normalized indices evaluated, the yield performance of the Relative Index (RI), Relative Difference Index (RDI), and Normalized Difference Index (NDI) were very similar, and generally superior to the Difference Index (DI). Overall, the results of this study demonstrated that for three different proximal optical sensors in both muskmelon and sweet pepper (i) normalized indices did not improve yield estimation, and (ii) that absolute measurements on lower leaves (L2, L3 and L4) slightly improved yield estimation performance.

Funder

Spanish Ministry of Science, Innovation and University

Ramón y Cajal grant

Scientific and Technological Research Council of Turkey

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3