Partial Discharge Diagnostics: Data Cleaning and Feature Extraction

Author:

Soh Donny,Krishnan Sivaneasan BalaORCID,Abraham Jacob,Xian Lai Kai,Jet Tseng KingORCID,Yongyi Jimmy Fu

Abstract

Detection of partial discharge (PD) in switchgears requires extensive data collection and time-consuming analyses. Data from real live operational environments pose great challenges in the development of robust and efficient detection algorithms due to overlapping PDs and the strong presence of random white noise. This paper presents a novel approach using clustering for data cleaning and feature extraction of phase-resolved partial discharge (PRPD) plots derived from live operational data. A total of 452 PRPD 2D plots collected from distribution substations over a six-month period were used to test the proposed technique. The output of the clustering technique is evaluated on different types of machine learning classification techniques and the accuracy is compared using balanced accuracy score. The proposed technique extends the measurement abilities of a portable PD measurement tool for diagnostics of switchgear condition, helping utilities to quickly detect potential PD activities with minimal human manual analysis and higher accuracy.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3