Simulation of Electric Vehicle Charging Points Based on Efficient Use of Chargers and Using Recuperated Braking Energy from Trains

Author:

Dvořáček LukášORCID,Horák MartinORCID,Knápek Jaroslav

Abstract

Electric vehicles represent an innovation in mobility that can help significantly reduce greenhouse emissions and mitigate climate change. However, replacing internal combustion with electric vehicles is not enough. This replacement needs to be complemented with a change in the energy mix of individual countries towards renewable energy sources and efficient use of electricity generated as a secondary product. Recuperative braking energy from trains can serve as one source of such secondary energy. Following an analysis of recuperative energy generated and analysis of charging requirements of individual electric vehicles, the paper proposes a model of a charging site near train stations. Using this energy to charge electric vehicles helps to reduce energy consumption from the electricity grid and thus reduce carbon emissions. Compared to other articles, the proposed model ensures the efficient use of recuperative braking energy from trains by using the variable charging power function; thereby, the installation of additional battery storage is eliminated. Our model results show that the benefits of a car park with a reservation system near train stations increase the car park efficiency, provide a sufficient number of private charging points, contribute to efficient use of recovered energy, and reduce carbon emissions.

Funder

Czech Technical University in Prague

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3