Assessing Feature Importance for Short-Term Prediction of Electricity Demand in Medium-Voltage Loads

Author:

Armano GiulianoORCID,Pegoraro Paolo AttilioORCID

Abstract

The design of new monitoring systems for intelligent distribution networks often requires both real-time measurements and pseudomeasurements to be processed. The former are obtained from smart meters, phasor measurement units and smart electronic devices, whereas the latter are predicted using appropriate algorithms—with the typical objective of forecasting the behaviour of power loads and generators. However, depending on the technique used for data encoding, the attempt at making predictions over a period of several days may trigger problems related to the high number of features. To contrast this issue, feature importance analysis becomes a tool of primary importance. This article is aimed at illustrating a technique devised to investigate the importance of features on data deemed relevant for predicting the next hour demand of aggregated, medium-voltage electrical loads. The same technique allows us to inspect the hidden layers of multilayer perceptrons entrusted with making the predictions, since, ultimately, the content of any hidden layer can be seen as an alternative encoding of the input data. The possibility of inspecting hidden layers can give wide support to researchers in a number of relevant tasks, including the appraisal of the generalisation capability reached by a multilayer perceptron and the identification of neurons not relevant for the prediction task.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Explainability Spectrum Analysis of Weather Sequences in Short-Term Load Forecasting;Lecture Notes in Networks and Systems;2024

2. Explainability Analysis of Weather Variables in Short- Term Load Forecasting;2023 14th International Conference on Information, Intelligence, Systems & Applications (IISA);2023-07-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3