Abstract
Speed-controlled induction motors have the most significant potential for energy savings. The greatest problems with obtaining high efficiency occur in motors with a wide range of rotational speed regulation, as in the motors for driving industrial washing machines under consideration. While for the highest speeds, the dominant phenomenon is at field weakening. The problem is obtaining the optimal size of the magnetic flux for low rotation speed to prevent excessive saturation increasing current, and reduction of efficiency. This problem is usually solved by selecting the appropriate control for an already built machine. The authors propose a combination of activities when designing the motor structure with the selection of proper control, which allows for high efficiency. Since the drive does not require precise speed control or obtaining the required dynamics, it was possible to use an inexpensive control in an open loop, avoiding the cost of transmitters. Furthermore, the number of design parameters that are subject to change is significantly limited by technological factors and the available space in the washing machine. Proper parameter selection was made using a peripheral method assisted by field-circuit simulations. The proposed approach can be used in designing structures and selecting motors controls for other applications.
Funder
The National Centre for Reaserch and Development - Poland
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献