Performance Analysis of Integrated Photovoltaic-Thermal and Air Source Heat Pump System through Energy Simulation

Author:

Bae SangmuORCID,Chae Soowon,Nam YujinORCID

Abstract

The concept of zero energy buildings (ZEBs) has recently been actively introduced in the building sector, globally, to reduce energy consumption and carbon emissions. For the implementation of ZEBs, renewable energy systems, such as solar collectors, photovoltaic (PV) systems, and ground source heat pump (GSHP) systems, have been used. The system performance of solar collectors and PV systems are dependent on the weather conditions. A GSHP system requires a large area for boring machines and mud pump machines. Therefore, inhabitants of an existing small-scale buildings hesitate to introduce GSHP systems due to the difficulties in installation and limited construction area. This study proposes an integrate photovoltaic-thermal (PVT) and air source heat pump (ASHP) system for realizing ZEB in an existing small-scale building. In order to evaluate the applicability of the integrated PVT-ASHP system, a dynamic simulation model that combines the PVT-ASHP system model and the building load model based on actual building conditions was constructed. The heating and cooling performances of the system for one year were analyzed using the dynamic simulation model. As the simulation analysis results, the average coefficient of performance (COP) for heating season was 5.3, and the average COP for cooling season was 16.3., respectively. From April to June, the electrical produced by the PVT module was higher than the power consumption of the system and could realize ZEB.

Funder

Korea Agency for Infrastructure Technology Advancement

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3