Data-Driven Low-Frequency Oscillation Event Detection Strategy for Railway Electrification Networks

Author:

Gonzalez-Jimenez DavidORCID,Del-Olmo JonORCID,Poza JavierORCID,Garramiola FernandoORCID,Madina PatxiORCID

Abstract

Low-frequency oscillations (LFO) occur in railway electrification systems due to the incorporation of new trains with switching converters. As a result, the increased harmonic content can cause catenary stability problems under certain conditions. Most of the research published on this topic to date is focused on modelling the event and analysing it using frequency spectrums. However, in recent years, due to the new technologies linked to Big Data (BD) and data mining (DM), a new opportunity to study and detect LFO events by means of machine-learning (ML) methods has emerged. Trains continuously collect data from the most important catenary variables, which offers new resources for analysing this type of event. Therefore, this article presents the design and implementation of a data-driven LFO event detection strategy for AC railway network scenarios. Compared to previous investigations, a new approach to analyse and detect LFO events, based on field data and ML, is presented. To obtain the most appropriate detection approach for the context of this application, on the one hand, this investigation includes a comparison of machine-learning algorithms (support vector machine, logistic regression, random forest, k-nearest neighbours, naïve Bayes) which have been trained with real field data. On the other hand, an analysis of key parameters and features to optimize event detection is also included. Thus, the most significant result of this work is the high metric values of the solution, reaching values above 97% in accuracy and 93% in F-1 score with the random forest algorithm. In addition, the applicability and training of data-driven methods with real field data are demonstrated. This automatic detection strategy can help with speeding up and improving LFO detection tasks that used to be performed manually. Finally, it is worth mentioning that this research has been structured based on the CRISP-DM methodology, established as the de facto approach for industrial DM projects.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3