The PANDEMYC Score. An Easily Applicable and Interpretable Model for Predicting Mortality Associated With COVID-19

Author:

Torres-Macho Juan,Ryan PabloORCID,Valencia JorgeORCID,Pérez-Butragueño MarioORCID,Jiménez Eva,Fontán-Vela MarioORCID,Izquierdo-García Elsa,Fernandez-Jimenez Inés,Álvaro-Alonso ElenaORCID,Lazaro Andrea,Alvarado Marta,Notario Helena,Resino Salvador,Velez-Serrano Daniel,Meca Alejandro

Abstract

This study aimed to build an easily applicable prognostic model based on routine clinical, radiological, and laboratory data available at admission, to predict mortality in coronavirus 19 disease (COVID-19) hospitalized patients. Methods: We retrospectively collected clinical information from 1968 patients admitted to a hospital. We built a predictive score based on a logistic regression model in which explicative variables were discretized using classification trees that facilitated the identification of the optimal sections in order to predict inpatient mortality in patients admitted with COVID-19. These sections were translated into a score indicating the probability of a patient’s death, thus making the results easy to interpret. Results. Median age was 67 years, 1104 patients (56.4%) were male, and 325 (16.5%) died during hospitalization. Our final model identified nine key features: age, oxygen saturation, smoking, serum creatinine, lymphocytes, hemoglobin, platelets, C-reactive protein, and sodium at admission. The discrimination of the model was excellent in the training, validation, and test samples (AUC: 0.865, 0.808, and 0.883, respectively). We constructed a prognostic scale to determine the probability of death associated with each score. Conclusions: We designed an easily applicable predictive model for early identification of patients at high risk of death due to COVID-19 during hospitalization.

Publisher

MDPI AG

Subject

General Medicine

Reference19 articles.

1. Coronavirus Disease (COVID-19) Situation Report-182 https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200720-covid-19-sitrep-182.pdf?sfvrsn=60aabc5c_2

2. Centro de Coordinación de Alertas y Emergencias Sanitarias. Actualización no 119. Enfermedad por el coronavirus (COVID-19). 28 May 2020 https://www.mscbs.gob.es/en/profesionales/saludPublica/ccayes/alertasActual/nCov-China/documentos/Actualizacion_119_COVID-19.pdf

3. Transparencia. Covid-19-TIA por municipios y distritos de Madrid https://datos.comunidad.madrid/catalogo/dataset/covid19_tia_muni_y_distritos

4. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study

5. Prediction models for diagnosis and prognosis of covid-19: systematic review and critical appraisal

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3