Structural and Hemodynamic Changes of the Right Ventricle in PH-HFpEF

Author:

Barilli Maria,Tavera Maria Cristina,Valente Serafina,Palazzuoli AlbertoORCID

Abstract

One of the most important diagnostic challenges in clinical practice is the distinction between pulmonary hypertension (PH) due to primitive pulmonary arterial hypertension (PAH) and PH due to left heart diseases. Both conditions share some common characteristics and pathophysiological pathways, making the two processes similar in several aspects. Their diagnostic differentiation is based on hemodynamic data on right heart catheterization, cardiac structural modifications, and therapeutic response. More specifically, PH secondary to heart failure with preserved ejection fraction (HFpEF) shares features with type 1 PH (PAH), especially when the combined pre- and post-capillary form (CpcPH) takes place in advanced stages of the disease. Right ventricular (RV) dysfunction is a common consequence related to worse prognosis and lower survival. This condition has recently been identified with a new classification based on clinical signs and progression markers. The role and prevalence of PH and RV dysfunction in HFpEF remain poorly identified, with wide variability in the literature reported from the largest clinical trials. Different parenchymal and vascular alterations affect the two diseases. Capillaries and arteriole vasoconstriction, vascular obliteration, and pulmonary blood fluid redistribution from the basal to the apical district are typical manifestations of type 1 PH. Conversely, PH related to HFpEF is primarily due to an increase of venules/capillaries parietal fibrosis, extracellular matrix deposition, and myocyte hypertrophy with a secondary “arteriolarization” of the vessels. Since the development of structural changes and the therapeutic target substantially differ, a better understanding of pathobiological processes underneath PH-HFpEF, and the identification of potential maladaptive RV mechanisms with an appropriate diagnostic tool, become mandatory in order to distinguish and manage these two similar forms of pulmonary hypertension.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3