Abstract
As integral parts of pathological arterial thrombi, platelets are the targets of pharmacological regimens designed to treat and prevent thrombosis. A detailed understanding of platelet biology and function is thus key to design treatments that prevent thrombotic cardiovascular disease without significant disruption of the haemostatic balance. Phosphoinositide 3-kinases (PI3Ks) are a group of lipid kinases critical to various aspects of platelet biology. There are eight PI3K isoforms, grouped into three classes. Our understanding of PI3K biology has recently progressed with the targeting of specific isoforms emerging as an attractive therapeutic strategy in various human diseases, including for thrombosis. This review will focus on the role of PI3K subtypes in platelet function and subsequent thrombus formation. Understanding the mechanisms by which platelet function is regulated by the various PI3Ks edges us closer toward targeting specific PI3K isoforms for anti-thrombotic therapy.
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献