Lifespan Extension of Podospora anserina Mic60-Subcomplex Mutants Depends on Cardiolipin Remodeling

Author:

Marschall Lisa-Marie,Warnsmann VerenaORCID,Meeßen Anja C.,Löser TimoORCID,Osiewacz Heinz D.ORCID

Abstract

Function of mitochondria largely depends on a characteristic ultrastructure with typical invaginations, namely the cristae of the inner mitochondrial membrane. The mitochondrial signature phospholipid cardiolipin (CL), the F1Fo-ATP-synthase, and the ‘mitochondrial contact site and cristae organizing system’ (MICOS) complex are involved in this process. Previous studies with Podospora anserina demonstrated that manipulation of MICOS leads to altered cristae structure and prolongs lifespan. While longevity of Mic10-subcomplex mutants is induced by mitohormesis, the underlying mechanism in the Mic60-subcomplex deletion mutants was unclear. Since several studies indicated a connection between MICOS and phospholipid composition, we now analyzed the impact of MICOS on mitochondrial phospholipid metabolism. Data from lipidomic analysis identified alterations in phospholipid profile and acyl composition of CL in Mic60-subcomplex mutants. These changes appear to have beneficial effects on membrane properties and promote longevity. Impairments of CL remodeling in a PaMIC60 ablated mutant lead to a complete abrogation of longevity. This effect is reversed by supplementation of the growth medium with linoleic acid, a fatty acid which allows the formation of tetra-octadecanoyl CL. In the PaMic60 deletion mutant, this CL species appears to lead to longevity. Overall, our data demonstrate a tight connection between MICOS, the regulation of mitochondrial phospholipid homeostasis, and aging of P. anserina.

Funder

Deutsche Forschungsgemeinschaft

German Federal State of Hesse

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3