Modulation of Aptamer–Ligand-Binding by Complementary Oligonucleotides: A G-Quadruplex Anti-Ochratoxin A Aptamer Case Study

Author:

Samokhvalov Alexey V.ORCID,Safenkova Irina V.,Eremin Sergei A.ORCID,Bonchuk Artem N.,Maksimenko Oksana G.,Sluchanko Nikolai N.ORCID,Zherdev Anatoly V.ORCID,Dzantiev Boris B.ORCID

Abstract

Short oligonucleotides are widely used for the construction of aptamer-based sensors and logical bioelements to modulate aptamer–ligand binding. However, relationships between the parameters (length, location of the complementary region) of oligonucleotides and their influence on aptamer–ligand interactions remain unclear. Here, we addressed this task by comparing the effects of short complementary oligonucleotides (ssDNAs) on the structure and ligand-binding ability of an aptamer and identifying ssDNAs’ features that determine these effects. Within this, the interactions between the OTA-specific G-quadruplex aptamer 1.12.2 (5′-GATCGGGTGTGGGTGGCGTAAAGGGA GCATCGGACA-3′) and 21 single-stranded DNA (ssDNA) oligonucleotides complementary to different regions of the aptamer were studied. Two sets of aptamer–ssDNA dissociation constants were obtained in the absence and in the presence of OTA by isothermal calorimetry and fluorescence anisotropy, respectively. In both sets, the binding constants depend on the number of hydrogen bonds formed in the aptamer–ssDNA complex. The ssDNAs’ having more than 23 hydrogen bonds with the aptamer have a lower aptamer dissociation constant than for aptamer–OTA interactions. The ssDNAs’ having less than 18 hydrogen bonds did not affect the aptamer–OTA affinity. The location of ssDNA’s complementary site in the aptamer affeced the kinetics of the interaction and retention of OTA-binding in aptamer–ssDNA complexes. The location of the ssDNA site in the aptamer G-quadruplex led to its unfolding. In the presence of OTA, the unfolding process was longer and takes from 20 to 70 min. The refolding in the presence of OTA was possible and depends on the length and location of the ssDNA’s complementary site. The location of the ssDNA site in the tail region led to its rapid displacement and wasn’t affecting the G-qaudruplex’s integrity. It makes the tail region more perspective for the development of ssDNA-based tools using this aptamer.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3