Berberine Suppresses Leukocyte Adherence by Downregulating CX3CL1 Expression and Shedding and ADAM10 in Lipopolysaccharide-Stimulated Vascular Endothelial Cells

Author:

Wu Yi-Hong,Wei Chen-Ying,Hong Wei-Chin,Pang Jong-Hwei Su

Abstract

Berberine exerts therapeutic effects in inflammation-associated diseases. In a lipopolysaccharide (LPS)-induced endotoxemic acute lung injury (ALI) rat model, berberine alleviated lung injury through different anti-inflammatory mechanisms; however, treatment effects on CX3CL1 expression and shedding remain to be examined. As these processes play important roles in promoting the binding of leukocytes to the endothelium, the CX3CL1/CX3CR1 axis and its related pathways may serve as potential targets for the clinical treatment of ALI. The anti-inflammatory effects of berberine were investigated in LPS-stimulated rats, human umbilical cord vein endothelial cells (HUVECs), and THP-1 monocytic cells. Cx3cl1 expression in rat pulmonary tissues was examined using immunohistochemistry. CX3CL1, CX3CR1, RELA, STAT3, and ADAM10 levels were examined using Western blotting. CX3CL1 and ADAM10 mRNA levels were examined using quantitative real-time polymerase chain reaction. Soluble fractalkine levels in LPS-stimulated rats and HUVECs were examined using the enzyme-linked immunosorbent assay. Berberine significantly mitigated the LPS-induced upregulation of fractalkine and soluble fractalkine in rats and cultured HUVECs. Berberine mitigated the LPS-induced activation of the NF-κB and STAT3 signaling pathways. In THP-1 cells, berberine mitigated the LPS-induced upregulation of CX3CR1. Furthermore, the membrane expression of ADAM10 in LPS-stimulated HUVECs was suppressed by the berberine treatment. Berberine dose-dependently inhibited the LPS-induced activation of the CX3CL1/CX3CR1 axis and fractalkine shedding through ADAM10. These findings reveal a novel molecular mechanism underlying the inhibitory effect of berberine on monocyte adherence to the endothelium during inflammation.

Funder

Chang Gung Memorial Hospital

Standard Food Corporation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3