The P2X7 Receptor Promotes Colorectal Inflammation and Tumorigenesis by Modulating Gut Microbiota and the Inflammasome

Author:

Bernardazzi Claudio,Castelo-Branco Morgana Teixeira Lima,Pêgo Beatriz,Ribeiro Beatriz Elias,Rosas Siane Lopes Bittencourt,Santana Patrícia TeixeiraORCID,Machado João CarlosORCID,Leal Camille,Thompson Fabiano,Coutinho-Silva RobsonORCID,de Souza Heitor Siffert PereiraORCID

Abstract

Background: Given the role of the P2X7 receptor (P2X7R) in inflammatory bowel diseases (IBD), we investigated its role in the development and progression of colitis-associated colorectal cancer (CA-CRC). Methods: CA-CRC was induced in P2X7R+/+ and P2X7R−/− mice with azoxymethane (AOM) combined with dextran sodium sulfate (DSS). In a therapeutic protocol, P2X7R+/+ mice were treated with a P2X7R-selective inhibitor (A740003). Mice were evaluated with follow-up video endoscopy with endoluminal ultrasound biomicroscopy. Colon tissue was analyzed for histological changes, densities of immune cells, expression of transcription factors, cytokines, genes, DNA methylation, and microbiome composition of fecal samples by sequencing for 16S rRNA. Results: The P2X7R+/+ mice displayed more ulcers, tumors, and greater wall thickness, than the P2X7R−/− and the P2X7R+/+ mice treated with A740003. The P2X7R+/+ mice showed increased accumulation of immune cells, production of proinflammatory cytokines, activation of intracellular signaling pathways, and upregulation of NLRP3 and NLRP12 genes, stabilized after the P2X7R-blockade. Microbial changes were observed in the P2X7R−/− and P2X7R+/+-induced mice, partially reversed by the A740003 treatment. Conclusions: Regulatory mechanisms activated downstream of the P2X7R in combination with signals from a dysbiotic microbiota result in the activation of intracellular signaling pathways and the inflammasome, amplifying the inflammatory response and promoting CA-CRC development.

Funder

Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro

Coordenação de Aperfeicoamento de Pessoal de Nível Superior

National Council for Scientific and Technological Development

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3