Scaffold Pore Curvature Influences ΜSC Fate through Differential Cellular Organization and YAP/TAZ Activity

Author:

Swanson W. BentonORCID,Omi Maiko,Woodbury Seth M.ORCID,Douglas Lindsey M.,Eberle Miranda,Ma Peter X.ORCID,Hatch Nan E.ORCID,Mishina YujiORCID

Abstract

Tissue engineering aims to repair, restore, and/or replace tissues in the human body as an alternative to grafts and prostheses. Biomaterial scaffolds can be utilized to provide a three-dimensional microenvironment to facilitate tissue regeneration. Previously, we reported that scaffold pore size influences vascularization and extracellular matrix composition both in vivo and in vitro, to ultimately influence tissue phenotype for regenerating cranial suture and bone tissues, which have markedly different tissue properties despite similar multipotent stem cell populations. To rationally design biomaterials for specific cell and tissue fate specification, it is critical to understand the molecular processes governed by cell-biomaterial interactions, which guide cell fate specification. Building on our previous work, in this report we investigated the hypothesis that scaffold pore curvature, the direct consequence of pore size, modulates the differentiation trajectory of mesenchymal stem cells (MSCs) through alterations in the cytoskeleton. First, we demonstrated that sufficiently small pores facilitate cell clustering in subcutaneous explants cultured in vivo, which we previously reported to demonstrate stem tissue phenotype both in vivo and in vitro. Based on this observation, we cultured cell-scaffold constructs in vitro to assess early time point interactions between cells and the matrix as a function of pore size. We demonstrate that principle curvature directly influences nuclear aspect and cell aggregation in vitro. Scaffold pores with a sufficiently low degree of principle curvature enables cell differentiation; pharmacologic inhibition of actin cytoskeleton polymerization in these scaffolds decreased differentiation, indicating a critical role of the cytoskeleton in transducing cues from the scaffold pore microenvironment to the cell nucleus. We fabricated a macropore model, which allows for three-dimensional confocal imaging and demonstrates that a higher principle curvature facilitates cell aggregation and the formation of a potentially protective niche within scaffold macropores which prevents MSC differentiation and retains their stemness. Sufficiently high principle curvature upregulates yes-associated protein (YAP) phosphorylation while decreased principle curvature downregulates YAP phosphorylation and increases YAP nuclear translocation with subsequent transcriptional activation towards an osteogenic differentiation fate. Finally, we demonstrate that the inhibition of the YAP/TAZ pathway causes a defect in differentiation, while YAP/TAZ activation causes premature differentiation in a curvature-dependent way when modulated by verteporfin (VP) and 1-oleyl-lysophosphatidic acid (LPA), respectively, confirming the critical role of biomaterials-mediated YAP/TAZ signaling in cell differentiation and fate specification. Our data support that the principle curvature of scaffold macropores is a critical design criterion which guides the differentiation trajectory of mesenchymal stem cells’ scaffolds. Biomaterial-mediated regulation of YAP/TAZ may significantly contribute to influencing the regenerative outcomes of biomaterials-based tissue engineering strategies through their specific pore design.

Funder

National Institute of Dental and Craniofacial Research

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3