The Link between Activities of Hepatic 11beta-Hydroxysteroid Dehydrogenase-1 and Monoamine Oxidase-A in the Brain Following Repeated Predator Stress: Focus on Heightened Anxiety

Author:

Tseilikman Vadim,Lapshin Maxim,Klebanov Igor,Chrousos GeorgeORCID,Vasilieva Maria,Pashkov Anton,Fedotova JuliaORCID,Tseilikman David,Shatilov Vladislav,Manukhina EugeniaORCID,Tseilikman Olga,Sarapultsev AlexeyORCID,Downey H. FredORCID

Abstract

We investigated the presence of a molecular pathway from hepatic 11-βHSD-1 to brain MAO-A in the dynamics of plasma corticosterone involvement in anxiety development. During 14 days following repeated exposure of rats to predator scent stress for 10 days, the following variables were measured: hepatic 11-βHSD-1 and brain MAO-A activities, brain norepinephrine, plasma corticosterone concentrations, and anxiety, as reflected by performance on an elevated plus maze. Anxiety briefly decreased and then increased after stress exposure. This behavioral response correlated inversely with plasma corticosterone and with brain MAO-A activity. A mathematical model described the dynamics of the biochemical variables and predicted the factor(s) responsible for the development and dynamics of anxiety. In the model, hepatic 11-βHSD-1 was considered a key factor in defining the dynamics of plasma corticosterone. In turn, plasma corticosterone and oxidation of brain ketodienes and conjugated trienes determined the dynamics of brain MAO-A activity, and MAO-A activity determined the dynamics of brain norepinephrine. Finally, plasma corticosterone was modeled as the determinant of anxiety. Solution of the model equations demonstrated that plasma corticosterone is mainly determined by the activity of hepatic 11-βHSD-1 and, most importantly, that corticosterone plays a critical role in the dynamics of anxiety following repeated stress.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3