Abstract
In this study, a novel T1RS.1BL translocation line RT843-5 was selected from a cross between wheat Mianyang11 (MY11) and Weining rye. The results of MC-FISH, PCR, and A-PAGE showed that RT843-5 contained two intact T1RS.1BL translocation chromosomes. RT843-5 showed resistance to the most virulent and frequently occurring stripe rust races/isolates. Additionally, RT843-5 showed resistance in the field in locations where stripe rust outbreaks have been the most severe in China. Genetic analysis indicated one new gene for stripe rust resistance, located on 1RS of RT843-5, which was tentatively named YrRt843. Furthermore, the chlorophyll content, the activities of catalase (CAT), and superoxide dismutase (SOD), and the net photosynthetic rate (Pn) of RT843-5 were significantly higher than those in its wheat parent MY11, whereas malondialdehyde (MDA) accumulation was significantly lower after anthesis in RT843-5 compared to in MY11. RT843-5 had a significantly higher 1000-kernel weight and yield than MY11. The results indicated that RT843-5 exhibited functional stay-green traits after anthesis, that delayed the senescence process in wheat leaves during the filling stage and had positive effects on grain yield. The present study indicated that Weining rye may carry untapped variations as a potential source of resistance, and that RT843-5 could be an important material for wheat breeding programs in the future.
Funder
National Natural Science Foundation of China
Science and Technology Department of Sichuan Province
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献