Discovery of Five New Ethylene-Forming Enzymes for Clean Production of Ethylene in E. coli

Author:

Cui Yixuan,Jiang Ying,Xiao Meng,Munir Muhammad Zeeshan,Riaz Sadaf,Rasul FaizORCID,Daroch MaurycyORCID

Abstract

Ethylene is an essential platform chemical with a conjugated double bond, which can produce many secondary chemical products through copolymerisation. At present, ethylene production is mainly from petroleum fractionation and cracking, which are unsustainable in the long term, and harmful to our environment. Therefore, a hot research field is seeking a cleaner method for ethylene production. Based on the model ethylene-forming enzyme (Efe) AAD16440.1 (6vp4.1.A) from Pseudomonas syringae pv. phaseolicol, we evaluated five putative Efe protein sequences using the data derived from phylogenetic analyses and the conservation of their catalytic structures. Then, pBAD expression frameworks were constructed, and relevant enzymes were expressed in E. coli BL21. Finally, enzymatic activity in vitro and in vivo was detected to demonstrate their catalytic activity. Our results show that the activity in vitro measured by the conversion of α-ketoglutarate was from 0.21–0.72 μmol ethylene/mg/min, which varied across the temperatures. In cells, the activity of the new Efes was 12.28–147.43 μmol/gDCW/h (DCW, dry cellular weight). Both results prove that all the five putative Efes could produce ethylene.

Funder

Shenzhen Fundamental Research Program

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference38 articles.

1. Polyethylene—The Material of Chance;Norton,2021

2. Ethylene-Propylene Rubber;Easterbrook,1987

3. Ethylene/Acrylic Acid Copolymer;Bährle-Rapp,2007

4. Production of gasoline range hydrocarbons from catalytic reaction of methane in the presence of ethylene over W/HZSM-5;Amin;Catal. Today,2005

5. Development of ethylene production technology from petroleum hydrocarbon cracking;Jia-Xiang;Petrochem. Ind.,1980

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3