Affiliation:
1. Institute of Control Sciences, Russian Academy of Sciences, Profsoyuznaya Str. 65, GSP-7, 117997 Moscow, Russia
Abstract
In this paper, we studied the Picard–Fuchs systems and equations which appear in the theory of Gauss–Manin systems and connections associated with deformations of isolated singularities. Among other things, we describe some interesting properties of such systems and relationships between them. Then we show how to calculate the fundamental solutions to the Gauss–Manin system for Aμ-singularities and to the corresponding generalized Legendre equations in terms of the multidimensional Horn’s hypergeometric functions. In conclusion, some important questions concerning basic properties of the local and global Picard–Fuchs systems of Pfaffian type, involving integrability conditions and commuting relations, are discussed in some detail.
Subject
Psychiatry and Mental health
Reference55 articles.
1. Euler, L. (1768). Institutionum Calculi Integralis, Vol. Primum, Secundum, Tertium, Academiae Imperialis Scientiarum.
2. Disquisitiones genrales circa seriem infinitam;Gauss;Comm. Gött.,1813
3. Appell, P., and Kampé de Fériet, J. (1926). Fonctions Hypergéométriques et Hypersphériques, Gauthier-Villars.
4. Über die Auflösung algebraischer Gleichungen durch hypergeometrische Funktionen;Birkeland;Math. Z.,1927
5. Über die Lösung algebraischer Gleichungsysteme durch hypergeometrische Funktionen;Mayr;Monatshefte Math. Phys.,1937