Abstract
Building energy assessment software/programs use various assumptions and types of thermal comfort models to forecast energy consumption. This paper compares the results of using two major thermal comfort models (adaptive thermal comfort and the predicted mean vote (PMV) adjusted by the expectancy factor) to examine their influence on the prediction of the energy consumption for several full-scale housing experimental modules constructed on the campus of the University of Newcastle, Australia. Four test modules integrating a variety of walling types (insulated cavity brick (InsCB), cavity brick (CB), insulated reverse brick veneer (InsRBV), and insulated brick veneer (InsBV)) were used for comparing the time necessary for cooling and heating to maintain internal thermal comfort for both models. This research paper exhibits the benefits of adopting the adaptive thermal model for building structures. It shows the effectiveness of this model in helping to reduce energy consumption, increasing the thermal comfort level for the buildings, and therefore reducing greenhouse emissions.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
45 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献