Profile Likelihood for Hierarchical Models Using Data Doubling

Author:

Lele Subhash R.1

Affiliation:

1. Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada

Abstract

In scientific problems, an appropriate statistical model often involves a large number of canonical parameters. Often times, the quantities of scientific interest are real-valued functions of these canonical parameters. Statistical inference for a specified function of the canonical parameters can be carried out via the Bayesian approach by simply using the posterior distribution of the specified function of the parameter of interest. Frequentist inference is usually based on the profile likelihood for the parameter of interest. When the likelihood function is analytical, computing the profile likelihood is simply a constrained optimization problem with many numerical algorithms available. However, for hierarchical models, computing the likelihood function and hence the profile likelihood function is difficult because of the high-dimensional integration involved. We describe a simple computational method to compute profile likelihood for any specified function of the parameters of a general hierarchical model using data doubling. We provide a mathematical proof for the validity of the method under regularity conditions that assure that the distribution of the maximum likelihood estimator of the canonical parameters is non-singular, multivariate, and Gaussian.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference38 articles.

1. Gelman, A., and Hill, J. (2006). Data Analysis Using Regression and Multilevel/Hierarchical Models, Cambridge University Press.

2. Inverse probability;Fisher;Mathematical Proceedings of the Cambridge Philosophical Society,1930

3. Ronneborg, L.T. (2017). Fiducial and Objective Bayesian inference: History, Theory and Comparisons, University of Oslo, Department of Mathematics. Technical Report.

4. Hidden dangers of specifying noninformative priors;Seaman;Am. Stat.,2012

5. Consequences of lack of parameterization invariance of non-informative Bayesian analysis for wildlife management: Survival of San Joaquin kit fox and declines in amphibian populations;Lele;Front. Ecol. Evol.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3