Mathematical Simulation of Casson MHD Flow through a Permeable Moving Wedge with Nonlinear Chemical Reaction and Nonlinear Thermal Radiation

Author:

Khan ZeeshanORCID,Rasheed Haroon Ur,Khan Ilyas,Abu-Zinadah Hanaa,Aldahlan Maha A.

Abstract

The influence of the chemical interaction and dynamic micropolar convective heat transfer flow of Casson fluid caused by a moving wedge immersed in a porous material was explored. The Joule heating owing to magnetized porous matrix heating was also deliberated. The mathematical formulation for mass conservation, momentum, energy, and concentration profiles was expressed in the form of partial differential equations. The dimensionless set of ordinary equations was reduced from modeled equations via a transformation framework and then solved by the RK4 built-in function in MATLAB SOFTWARE by taking a step size of Δη=0.01. The existing work was compared with the published work. The iteration procedure was stopped until all of the nodes in the η-direction met the convergence condition 10−5. The physical appearance of material parameters on the flow field, temperature, concentration, drag force, and Nusselt number was discussed through plots. The numerical results were obtained for limiting circumstances. The unsteadiness factor thinned the velocity boundary layer but decreased the thermal and concentration boundary layers. By increasing the Eckert number, the nondimensional temperature profile was enhanced. The novelty of the present study is that no one has numerically investigated the magnetized Casson fluid over a moving wedge in the presence of a chemical reaction and thermal radiation.

Publisher

MDPI AG

Subject

General Materials Science

Reference49 articles.

1. A flow equation for pigment-oil suspensions of the printing ink type;Casson,1959

2. Heat Transfer in a Casson Rheological Fluid from a Semi-infinite Vertical Plate with Partial Slip

3. Flows of viscoplastic materials: Models and computations;Mitsoulis;Br. Soc. Rheol.,2007

4. Casson fluid flow and heat transfer over a nonlinearly stretching surface

5. Soret and Dufour effects on magnetohydrodynamic (MHD) flow of Casson fluid

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3