Abstract
This article considers the use of additive manufacturing to produce cutting tools for various machining operations, especially turning, milling, and drilling. The right geometry and material of the tool as well as coatings applied on cutting edges are crucial as they improve the life and performance of the tool. The study described here focused on a four-flute end mill made of maraging steel 1.2709 using a Concept Laser M2 Cusing Direct Metal Laser Melting (DMLM) machine. Before the printed tool was first used, it was examined to determine its dimensional and geometric accuracy, surface roughness, and surface structure. The measurement data showed that the tool required machining, e.g., grinding, to improve its geometry because the total runout of the shank and the cutting edge radius were too high, amounting to 120 μm and 217 μm, respectively. The cutting edges were sharpened to obtain a fully functional cutting tool ready to perform milling operations. The study aimed to check the dimensional and geometric accuracy of the 3D printed milling cutter and determine the optimal machining allowance for its finishing.
Subject
General Materials Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献