Structural and Optical Characterizations of Cadmium Chalcogenide Layers on Polyamide Formed Using Monotelluropentathionic Acid

Author:

Ivanauskas Remigijus,Samardokas LinasORCID,Sukyte Judita,Zalenkiene Skirma,Ancutiene IngridaORCID

Abstract

Mixed cadmium tellurides–cadmium sulfide thin layers were formed on the polyamide PA 6. Monotelluropentathionic acid (H2TeS4O6) was used as a precursor of tellurium and sulfur. A low-temperature, nontoxic, and cost-effective SILAR method was applied. Cadmium telluride (CdTe) and sulfide (CdS) layers were formed through the consecutive reactions of sorbed/diffused chalcogens species from telluropentathionate anion (TeS4O62−) with functional groups of polyamide and alkaline cadmium sulfate. The pseudo-second-order rate and Elovich kinetic models were the best fit to quantify an uptake of chalcogens and cadmium on PA 6. The effects of chalcogens and Cd on the structure and optical properties of PA 6 were characterized using UV-Vis and IR spectra. The clear changes of these properties depended on the concentration and exposure time in the precursor solutions. Fourier transform infrared spectroscopy and ultraviolet-visible spectroscopy were applied in order to evaluate the effect of the chalcogen species on the changes in structure of polyamide 6 films, depending on the exposure time in the solution of the chalcogens precursor and its concentration. The optical bandgap energy of the formed layers was found to be in the order of 1.52–2.36 eV. Studies by scanning electron microscopy and atomic force microscopy reveal that the diameter of the average grain is approximately 30 nm. The grains are conical in shape and unevenly distributed all over the surface of the substrate.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3