Numerical Modelling of the Dynamic Voltage in HTS Materials under the Action of DC Transport Currents and Different Oscillating Magnetic Fields

Author:

Shen BoyangORCID,Chen Xiaoyuan,Fu Lin,Hao LuningORCID,Coombs Tim

Abstract

The dynamic voltage is a unique phenomenon of superconducting materials. It arises when the superconductor is carrying a DC transport current and spontaneously in subject to an AC magnetic field. This study excavates the aspects that previous studies have not comprehensively investigated: the dynamic voltage in a DC-carrying superconducting tape exposed to different oscillating AC magnetic fields. First, the fundamental physics of dynamic voltage/flux of superconductors is reviewed and further analysed in detail. We used the superconducting modelling method using the H-formulation merged into the finite-element method (FEM) software, to re-produce the typical dynamic voltage behaviour of a superconducting tape. The modelling was verified by both the analytical and experimental results, in order to precisely prove the reliability of the modelling. Afterwards, the modelling was performed for a DC-carrying superconducting tape under four different oscillating magnetic fields (sine, triangle, sawtooth and square), and their corresponding dynamic voltages and energy losses were analysed and compared. Results show the sinusoidal magnetic field can lead to the optimal combination of reasonable dynamic voltage but relatively lower loss, which is suitable for those superconducting applications requiring dynamic voltage as the energy source, e.g., flux pumps. This article presents novel investigation and analysis of the dynamic voltage in superconducting materials, and both the methodology and results can provide useful information for the future design/analysis of superconducting applications with DC transport currents and AC magnetic fields.

Funder

Engineering and Physical Sciences Research Council

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3