Adaptive Residual Weighted K-Nearest Neighbor Fingerprint Positioning Algorithm Based on Visible Light Communication

Author:

Xu ShiwuORCID,Chen Chih-Cheng,Wu YiORCID,Wang Xufang,Wei FenORCID

Abstract

The weighted K-nearest neighbor (WKNN) algorithm is a commonly used fingerprint positioning, the difficulty of which lies in how to optimize the value of K to obtain the minimum positioning error. In this paper, we propose an adaptive residual weighted K-nearest neighbor (ARWKNN) fingerprint positioning algorithm based on visible light communication. Firstly, the target matches the fingerprints according to the received signal strength indication (RSSI) vector. Secondly, K is a dynamic value according to the matched RSSI residual. Simulation results show the ARWKNN algorithm presents a reduced average positioning error when compared with random forest (81.82%), extreme learning machine (83.93%), artificial neural network (86.06%), grid-independent least square (60.15%), self-adaptive WKNN (43.84%), WKNN (47.81%), and KNN (73.36%). These results were obtained when the signal-to-noise ratio was set to 20 dB, and Manhattan distance was used in a two-dimensional (2-D) space. The ARWKNN algorithm based on Clark distance and minimum maximum distance metrics produces the minimum average positioning error in 2-D and 3-D, respectively. Compared with self-adaptive WKNN (SAWKNN), WKNN and KNN algorithms, the ARWKNN algorithm achieves a significant reduction in the average positioning error while maintaining similar algorithm complexity.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3