Study on Accuracy Evaluation of MCD19A2 and Spatiotemporal Distribution of AOD in Arid Zones of Central Asia

Author:

Zhu Zhengnan123,Zhang Zhe1234,Liu Fangqing123,Chen Zewei123,Ren Yuxin123,Guo Qingfu123

Affiliation:

1. College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830046, China

2. Xinjiang Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi 830046, China

3. Key Laboratory of Smart City and Environment Modelling of Higher Education Institute, Xinjiang University, Urumqi 830046, China

4. MNR Technology Innovation Center for Central Asia Geo-Information Exploitation and Utilization, Urumqi 830046, China

Abstract

The Central Asian arid zone is the largest non-territorial arid zone in the world, so it is particularly important to understand the optical properties of aerosols in this region. In this paper, we validate the MCD19A2 atmospheric aerosol optical depth (AOD) remote sensing data by using ground-based data and measured data. To explore the spatial and temporal changes in aerosols in the Central Asian arid zone as well as the interannual variations and seasonal variations, we characterize the spatial and temporal distributions of the AOD over 20 years. Finally, we analyze the spatial and temporal variations of the AOD in the Central Asian arid zone by using three methods, namely, the Theil–Sen median trend analysis combined with the Mann–Kendall test, coefficient of variation, and Hurst index; analyze the characteristics of the spatial and temporal variations of the AOD in the Central Asian arid zone; and explore the relationships among the AOD, wind speed, and NDVI. This study reveals the characteristics of the long-term changes in the aerosol optical properties in the Central Asian arid zone and provides a scientific basis for estimating the factors affecting climate change.

Funder

National Natural Science Foundation of China

Open Project of Key Laboratory in Xinjiang Uygur Autonomous Region of China

Open Research Fund of Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3