Techno-Environmental Evaluation and Optimization of a Hybrid System: Application of Numerical Simulation and Gray Wolf Algorithm in Saudi Arabia

Author:

Alghamdi Hisham1ORCID,Alviz-Meza Aníbal2

Affiliation:

1. Electrical Engineering Department, College of Engineering, Najran University, Najran 55461, Saudi Arabia

2. Grupo de Investigación en Deterioro de Materiales, Transición Energética y Ciencia de Datos DANT3, Facultad de Ingeniería, Arquitectura y Urbanismo, Universidad Señor de Sipán, Km 5 Vía Pimentel, Chiclayo 14001, Peru

Abstract

Renewable energy systems have the potential to address increasing energy demand, mitigate environmental degradation, and decrease reliance on fossil fuels. Wind and solar power are examples of renewable energy sources that are characterized by their cleanliness, environmental friendliness, and sustainability. The combination of wind and solar energy is motivated by each energy source’s inherent variability. The objective of this study is to assess the technical, economic, and environmental aspects of a hybrid system designed to provide energy. This study utilizes numerical simulation and develops a novel model using the gray wolf optimization (GWO) algorithm to assess the technical, economic, and environmental consequences of adopting a hybrid system. The evaluation focused on determining the optimal configuration of a greenhouse unit in Najran, Saudi Arabia, over a period of 20 years. The results showed that the diesel generator produced 42% of the required energy when combined with photovoltaic generators, while photovoltaics produced 58%. The wind turbine generated 23% of the required power while the remaining 77% was produced by the diesel generator. Finally, diesel generators, photovoltaics, wind turbines were observed to generate 37%, 48%, and 15% of the required energy, respectively. This outcome is consistent with current knowledge because solar and wind systems reduce pollution. However, the diesel generator–photovoltaic–wind mode is the preferred method of reducing emissions. Finally, the rate of return on investment for diesel generators is 3.4 years, while for diesel-photovoltaic generators and the triple array it is 2.5 and 2.65 years, respectively.

Funder

Scientific Research at Najran University under the Research Groups Funding Program

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference50 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3