Plastic Waste Valorization for Fused Deposition Modeling Feedstock: A Case Study on Recycled Polyethylene Terephthalate/High-Density Polyethylene Sustainability

Author:

Ragab Amira1,Elazhary Rana1,Schmauder Siegfried2ORCID,Ramzy Amna1ORCID

Affiliation:

1. Faculty of Engineering and Materials Science, German University in Cairo, Cairo 11835, Egypt

2. Institute for Materials Testing, Materials Science and Strength of Materials, University of Stuttgart, 70569 Stuttgart, Germany

Abstract

In this study, material development, characterization, and sustainability assessment are performed on blends from recycled post-consumer commodity plastics for fused deposition modeling (FDM) filament extrusion. A recycled polyethylene terephthalate (rPET) and high-density polyethylene (rHDPE) blend 80:20 ratio is modified using three different methods: compatibilization with Maleic Anhydride, surface functionalization of PET with sodium dodecyl sulphate (SDS), and hybridization by combination of the two methods which is a novel approach. The selected blends were reinforced with chopped glass fibers and characterized. The printability of blends was assessed, and the dimensional accuracy of the prints was calculated. In addition, a cost estimation and comparison between the developed blends and the commercially available FDM filaments was carried out. Finally, life cycle assessment (LCA) was conducted for each prepared blend to facilitate the decision of the optimum blend in relation to mechanical properties and environmental performance and hence correlate the material, economic, and sustainability advantages.

Funder

Science Technology and Development Fund - Egypt

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference64 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3