Research on the Factors Influencing CO2 Emission Reduction in High-Energy-Consumption Industries under Carbon Peak

Author:

Zhang Hongxing1,Li Shuanbao2

Affiliation:

1. School of Finance, Henan Finance University, Zhengzhou 451464, China

2. School of Artificial Intelligence, Henan Finance University, Zhengzhou 451464, China

Abstract

In the context of reaching peak carbon emissions, it is crucial to develop carbon reduction strategies for high-energy-consuming industries as part of a broader societal transition from dependence on high-pollution energy sources to low-pollution alternatives. This study focuses on carbon emission reduction in the non-ferrous metal industry, which is known for its significant energy consumption. It employs the Logarithmic Mean Divisia Index (LMDI) model to conduct empirical analyses from three perspectives: carbon emission decomposition, regionalization analysis, and carbon emission prediction. The objective is to explore the carbon emission characteristics of high-energy-consuming industries in China and provide theoretical support for future policies aimed at reducing carbon emissions in these industries. The findings reveal that the economic scale of the non-ferrous metal industry has a positive correlation with carbon emissions, while carbon emission coefficients exhibit a negative correlation. Moreover, in the prediction scenarios considered, the increase in carbon emissions resulting from the economic-scale factor accounted for 75.28%, 87.46%, and 65.21% respectively, indicating that it has the most significant influence among all factors analyzed. The study further demonstrates that under stable and active emission reduction scenarios, the future potential for carbon dioxide emission reduction in the non-ferrous metal industry is estimated to reach 858.47 million tons and 1384.65 million tons, respectively. These figures represent twice and three times the emissions recorded in 2021. By analyzing the factors influencing emission reduction, targeted regulations can be implemented to develop practical and effective strategies for reducing carbon emissions in the industry. From the analysis conducted, it can be deduced that high-energy-consuming industries, particularly the non-ferrous metal industry, exhibit relatively high levels of carbon emissions. Consequently, it is imperative to implement proactive measures to reduce these emissions. Additionally, the industry’s carbon emissions are heavily influenced by changes in economic scale due to its high dependence on it. This highlights the importance of considering economic factors when devising strategies to mitigate carbon emissions. Furthermore, the potential for improvement in the non-ferrous metal industry’s energy structure and carbon emission coefficients is limited. Simply relying on technological innovation alone may not suffice to achieve significant emission reduction goals. Therefore, it becomes crucial for the government to develop tailored emission reduction targets and policies based on the industry’s specific circumstances to attain optimal results.

Funder

Henan Science and Technology Development Plan Project

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3