Environmental Impact Assessment of Nesjavellir Geothermal Power Plant for Heat and Electricity Production

Author:

Mainar-Toledo María Dolores1ORCID,Díaz-Ramírez Maryori12,Egilsson Snorri J.3,Zuffi Claudio4,Manfrida Giampaolo4ORCID,Leiva Héctor1ORCID

Affiliation:

1. Research Centre for Energy Resources and Consumption (CIRCE), Avenida Ranillas Edificio Dinamiza, 3D, 50018 Zaragoza, Spain

2. CIRCE Institute, Fundación CIRCE, Universidad de Zaragoza, 50009 Zaragoza, Spain

3. Reykjavik Energy, Bæjarháls 1, 110 Reykjavik, Iceland

4. Department of Industrial Engineering, University of Florence, 50139 Florence, Italy

Abstract

This work is focused on presenting the main results and discussions concerning the environmental benefits of reducing the non-condensable gases emitted from the Nesjavellir geothermal power plant. The primary objective of this study is to conduct a life cycle evaluation to analyse the overall environmental benefit effects of producing 1 kWh of electricity and 1 kWh of thermal energy in the geothermal power plant at Nesjavellir, which is located in Iceland. The assessment is performed both before and after implementing an abatement system designed to reduce CO2 and H2S gases. The production of geothermal energy is increasing every year and, therefore, it is crucial to identify and quantify the key environmental factors of producing this type of energy and improvements for the future energy transition of the energy generation sector. Firstly, the results show that the environmental impact of electricity production is higher compared to heat production. More in detail, the emissions due to the nature of the geothermal fluid and the construction phase represent the most relevant environmental load for both electricity and heat production for nearly all the 18 environmental impact indicators studied. Furthermore, considering the abatement system for the non-condensable gas emissions, reductions of 78% and 60% in global warming potential is achieved for a production of 1 kWh of electricity and 1 kWh of thermal energy. In terms of external environmental costs, the implementation of an abatement system results in a reduction exceeding 95% for both electricity and thermal energy production per kilowatt-hour. The outcomes obtained from both the baseline scenario and the application of the abatement system undeniably prove that the latter results in a substantial decrease in the overall environmental impacts linked to the generation of 1 kWh of electricity and 1 kWh of heat, encompassing a notable reduction in external environmental costs (externalities).

Funder

European Union’s Horizon 2020 Research and Innovation Program

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3