Spatiotemporal Variation and Future Predictions of Soil Salinization in the Werigan–Kuqa River Delta Oasis of China

Author:

He Baozhong123,Ding Jianli123,Huang Wenjiang4ORCID,Ma Xu12ORCID

Affiliation:

1. College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830017, China

2. Xinjiang Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi 830017, China

3. Key Laboratory of Smart City and Environment Modelling of Higher Education Institute, Xinjiang University, Urumqi 830017, China

4. Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China

Abstract

Soil salinization is a serious global issue; by 2050, without intervention, 50% of the cultivated land area will be affected by salinization. Therefore, estimating and predicting future soil salinity is crucial for preventing soil salinization and investigating potential arable land resources. In this study, several machine learning methods (random forest (RF), Light Gradient Boosting Machine (LightGBM), Gradient Boosting Decision Tree (GBDT), and eXtreme Gradient Boosting (XGBoost)) were used to estimate the soil salinity in the Werigan–Kuqa River Delta Oasis region of China from 2001 to 2021. The cellular automata (CA)–Markov model was used to predict soil salinity types from 2020 to 2050. The LightGBM method exhibited the highest accuracy, and the overall prediction accuracy of the methods had the following order: LightGBM > RF > GBRT > XGBoost. Moderately saline, severely saline, and saline soils were dominant in the east and south of the research area, while non-saline and mildly saline soils were widely distributed in the inner oasis area. A marked decreasing trend in the soil salt content was observed from 2001 to 2021, with a decreasing rate of 4.28 g/kg·10 a−1. The primary change included the conversion of mildly and severely saline soil types to non-saline soil. The generalized difference vegetation index (51%), Bio (30%), and temperature vegetation drought index (27%) had the greatest influence, followed by variables associated with soil attributes (soil organic carbon and soil organic carbon stock) and terrain (topographic wetness index, slope, aspect, curvature, and topographic relief index). Overall, the CA–Markov simulation resulted exhibited suitable accuracy (kappa = 0.6736). Furthermore, areas with non-saline and mildly saline soils will increase while areas with other salinity levels will continue to decrease from 2020 to 2050. From 2046 to 2050, numerous areas with saline soil will be converted to non-saline soil. These results can provide support for salinization control, agricultural production, and soil investigations in the future. The gradual decline in soil salinization in the research area in the past 20 years may have resulted from large-scale land reclamation, which has turned saline alkali land into arable land and is also related to effective measures taken by the local government to control salinization.

Funder

Third Xinjiang Comprehensive Scientific Expedition

Natural Science Foundation of Xinjiang Uygur Autonomous Region

Ph.D. Starts Funds in Xinjiang University

Key Project of Natural Science Foundation of Xinjiang Uygur Autonomous Region

National Natural Science Foundation of China

Tianchi Doctor Program of Department of Education of Xinjiang Uygur Autonomous Region

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference73 articles.

1. Khan, N.M., Rastoskuev, V.V., Shalina, E.V., and Sato, Y. (2001, January 5–9). Mapping salt-affected soils using remote sensing indicators—A simple approach with the use of GIS IDRISI. Proceedings of the 22nd Asian Conference on Remote Sensing, Singapore.

2. Moreau, S.S. (1996, January 22–26). Application of remote sensing and GIS to the mapping of saline\sodic soils and evaluation of codification risks in the Province of Villarreal, central Altiplano, Bolivia. Proceedings of the 4th International Symposium on High Mountain Remote Sensing Cartography, Berlin, Germany.

3. Image transforms as a tool for the study of soil salinity and alkalinity dynamics;Dwivedi;Int. J. Remote Sens.,1998

4. Detecting soil salinity with MODIS time series VI data;Zhang;Ecol. Indic.,2015

5. Soil salinization management for sustainable development: A review;Singh;J. Environ. Manag.,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3