Optimization and Comparative Analysis of Different CCUS Systems in China: The Case of Shanxi Province

Author:

Zhou Wenyue1,Pan Lingying1,Mao Xiaohui2

Affiliation:

1. Business School, University of Shanghai for Science and Technology, Jungong Road 516, Yangpu District, Shanghai 200093, China

2. Shanghai Future Office Park Development & Operation Co., Ltd., Shanghai 200949, China

Abstract

As an effective technology to reduce carbon dioxide emissions, carbon capture, utilization, and storage (CCUS) technology has been a major strategic choice and has received widespread attention. Meanwhile, the high cost and strict requirements of carbon dioxide storage and utilization on geographical conditions, industrial equipment, and other aspects limit large-scale applications of CCUS. Taking Shanxi Province as an example, in this paper, we study the economic and environmental characteristics of carbon dioxide capture, storage, and utilization under different combinations of technical routes. Steel, power, cement, and chemical industries are considered. Deep saline aquifers and CO2-enhanced coalbed methane (CO2-ECBM) recovery are selected as the two types of sequestration sinks. Urea production, methanol production, microalgae cultivation, and cement curing are selected as the four potential utilization methods. Then, a mixed-integer linear programming (MILP) model is used to optimize the CO2 utilization pathway based on the principle of least cost, to select the best emission sources, CO2 pipelines, intermediate transportation nodes, utilization, and storage nodes to achieve reasonable deployment of CCS/CCU projects in Shanxi Province. The results show that CCU with urea production has the lowest cost and is the most economically viable with over 50% reduction in emissions. The second option is CCS which includes CO2-ECBM and achieves a 50% reduction in emissions. In addition, there is little difference between the cost of cement-cured CCU and that of methanol-produced CCU. CCU for microalgae cultivation has the highest cost. Therefore, the latter three utilization pathways are currently not economical.

Funder

Science and Technology Commission of Shanghai Municipality

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference45 articles.

1. China’s progress toward sustainable development in pursuit of carbon neutrality: Regional differences and dynamic evolution;Wen;Environ. Impact Assess. Rev.,2023

2. Van der Hoeven, M. (2014). CO2 Emissions from Fuel Combustion Highlights, International Energy Agency.

3. IEA (2016). CO2 Emissions from Fuel Combustion—Highlights, IEA.

4. Impact assessment of clean air action on total factor energy productivity: A three-dimensional analysis;Li;Environ. Impact Assess. Rev.,2022

5. Impact assessment of population migration on energy consumption and carbon emissions in China: A spatial econometric investigation;Bu;Environ. Impact Assess. Rev.,2022

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3