Optimal Design of the Proton-Exchange Membrane Fuel Cell Connected to the Network Utilizing an Improved Version of the Metaheuristic Algorithm

Author:

Guo Xuanxia12,Ghadimi Noradin3

Affiliation:

1. College of Public Administration and Emergency Management, Jinan University, Guangzhou 510632, China

2. School of Marxism, Hunan City University, Yiyang 413000, China

3. Young Researchers and Elite Club, Ardabil Branch, Islamic Azad University, Ardabil 5615731567, Iran

Abstract

Fuel cells are a newly developed source for generating electric energy. These cells produce electricity through a chemical reaction between oxygen and hydrogen, which releases electrons. In recent years, extensive research has been conducted in this field, leading to the emergence of high-power batteries. This study introduces a novel technique to enhance the power quality of grid-connected proton-exchange membrane (PEM) fuel cells. The proposed approach uses an inverter following a buck converter that reduces voltage. A modified pelican optimization (MPO) algorithm optimizes the controller firing. A comparison is made between the controller’s performance, based on the recommended MPO algorithm and various other recent approaches, demonstrating the superior efficiency of the MPO algorithm. The study’s findings indicate that the current–voltage relationship in proton-exchange membrane fuel cells (PEMFCs) follows a logarithmic pattern, but becomes linear in the presence of ohmic overvoltage. Furthermore, the PEMFC operates at an impressive efficiency of 60.43% when running at 8 A, and it can deliver a significant power output under specific operating conditions. The MPO algorithm surpasses other strategies in terms of efficiency and reduction in voltage deviation, highlighting its effectiveness in managing the voltage stability, and improving the overall performance. Even during a 0.2 sagging event, the MPO-based controller successfully maintains the fuel cell voltage near its rated value, showcasing the robustness of the optimized regulators. The suggested MPO algorithm also achieves a superior accuracy in maintaining the voltage stability across various operating conditions.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3