Modified Gannet Optimization Algorithm for Reducing System Operation Cost in Engine Parts Industry with Pooling Management and Transport Optimization

Author:

Alkahtani Mohammed1ORCID,Abidi Mustufa Haider1ORCID,Obaid Hamoud S. Bin1,Alotaik Osama1ORCID

Affiliation:

1. Department of Industrial Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia

Abstract

Due to the emergence of technology, electric motors (EMs), an essential part of electric vehicles (which basically act as engines), have become a pivotal component in modern industries. Monitoring the spare parts of EMs is critical for stabilizing and managing industrial parts. Generally, the engine or motor parts are delivered to factories using packing boxes (PBs). This is mainly achieved via a pooling center that manages the operation and transportation costs. Nevertheless, this process has some drawbacks, such as a high power train, bad press, and greater energy and time consumption, resulting in performance degradation. Suppliers generally take the parts from one place and deliver them to the other, which leads to more operation and transportation costs. Instead, it requires pooling centers to act as hubs, at which every supplier collects the material. This can mitigate the cost level. Moreover, choosing the placement of pooling centers is quite a challenging task. Different methods have been implemented; however, optimal results are still required to achieve better objectives. This paper introduces a novel concept for pooling management and transport optimization of engine parts to overcome the issues in traditional solution methodologies. The primary intention of this model is to deduce the total cost of the system operation and construction. Programming techniques for transporting the PBs, as well as for locating the pooling center, are determined with the aid of an objective function as a cost function. The location of the pooling center’s cost is optimized, and a Modified Gannet Optimization Algorithm (MGOA) is proposed. Using this method, the proposed model is validated over various matrices, and the results demonstrate its better efficiency rate.

Funder

King Saud University

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3