An Adaptive Decision Tree Regression Modeling for the Output Power of Large-Scale Solar (LSS) Farm Forecasting

Author:

Kassim Nabilah Mat1ORCID,Santhiran Sathiswary1,Alkahtani Ammar Ahmed1ORCID,Islam Mohammad Aminul2ORCID,Tiong Sieh Kiong1,Mohd Yusof Mohd Yusrizal3,Amin Nowshad1ORCID

Affiliation:

1. Institute of Sustainable Energy (ISE), Universiti Tenaga Nasional, Kajang 43000, Selangor, Malaysia

2. Department of Electrical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Kuala Lumpur, Malaysia

3. TNB Renewables Sdn. Bhd., No. 16A, Persiaran Barat, Petaling Jaya 46050, Selangor, Malaysia

Abstract

The installation of large-scale solar (LSS) photovoltaic (PV) power plants continues to rise globally as well as in Malaysia. The data provided by LSS PV consist of five weather stations with seven parameters, a 22-unit inverter, and 1-unit PQM Meter Grid as a big dataset. These big data are rapidly changing every minute, they lack data quality when missing data, and need to be analyzed for a longer duration to leverage their benefits to prevent misleading information. This paper proposed the forecasting power LSS PV using decision tree regression from three types of input data. Case 1 used all 35 parameters from five weather stations. For Case 2, only seven parameters were used by calculating the mean of five weather stations. While Case 3 was chosen from an index correlation of more than 0.8. The analysis of the historical data was carried out from June 2019 until December 2020. Moreover, the mean absolute error (MAE) was also calculated. A reliability test using the Pearson correlation coefficient (r) and coefficient of determination (R2) was done upon comparing with actual historical data. As a result, Case 2 was proposed to be the best input dataset for the forecasting algorithm.

Funder

Universiti Tenaga Nasional

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3