Dynamic Clustering Strategies Boosting Deep Learning in Olive Leaf Disease Diagnosis

Author:

Alsaeedi Ali1ORCID,Al-juboori Ali1ORCID,Al-Mahmood Haider2,Hadi Suha3,Mohammed Husam4ORCID,Aziz Mohammad1ORCID,Aljibawi Mayas5,Nuiaa Riyadh6ORCID

Affiliation:

1. College of Computer Science and Information Technology, Al-Qadisiyah University, Diwaniyah 58009, Iraq

2. Department of Computer Science, College of Science, University of Mustansiriyah, Baghdad 10069, Iraq

3. Informatics Institute for Postgraduate Studies, Iraqi Commission for Computer and Informatics, Bagdad 10052, Iraq

4. Department of Business Administration, College of Administration and Financial Sciences, Imam Ja’afar Al-Sadiq University, Baghdad 10001, Iraq

5. Computer Techniques Engineering Department, College of Engineering and Technologies, Al-Mustaqbal University, Babil 51002, Iraq

6. College of Education for Pure Sciences, Wasit University, Wasit 52001, Iraq

Abstract

Artificial intelligence has many applications in various industries, including agriculture. It can help overcome challenges by providing efficient solutions, especially in the early stages of development. When working with tree leaves to identify the type of disease, diseases often show up through changes in leaf color. Therefore, it is crucial to improve the color brightness before using them in intelligent agricultural systems. Color improvement should achieve a balance where no new colors appear, as this could interfere with accurate identification and diagnosis of the disease. This is considered one of the challenges in this field. This work proposes an effective model for olive disease diagnosis, consisting of five modules: image enhancement, feature extraction, clustering, and deep neural network. In image enhancement, noise reduction, balanced colors, and CLAHE are applied to LAB color space channels to improve image quality and visual stimulus. In feature extraction, raw images of olive leaves are processed through triple convolutional layers, max pooling operations, and flattening in the CNN convolutional phase. The classification process starts by dividing the data into clusters based on density, followed by the use of a deep neural network. The proposed model was tested on over 3200 olive leaf images and compared with two deep learning algorithms (VGG16 and Alexnet). The results of accuracy and loss rate show that the proposed model achieves (98%, 0.193), while VGG16 and Alexnet reach (96%, 0.432) and (95%, 1.74), respectively. The proposed model demonstrates a robust and effective approach for olive disease diagnosis that combines image enhancement techniques and deep learning-based classification to achieve accurate and reliable results.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3